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Overview 

• Use an optimization-based approach to identify design 
requirements of new systems  
– Address issue that new systems operate along with existing systems  
– Seek fleet-level performance and capabilities 

• Development of a decision-support framework 
– Determine requirements for – and suggest design of – a new system that will 

optimize fleet-level objectives to support acquisition 
– Fleet-level objectives are functions of new system requirements 
– Account for design parameter and demand uncertainties 

• Used the framework to generate tradeoffs between fleet-
level productivity and cost 
– Motivated by energy and fuel consumption, reflected via operating cost 
– Route network extracted from Air Mobility Command (AMC) operations 
– New aircraft design change across range of best tradeoff solutions 
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INTRODUCTION AND  
MOTIVATION 



Motivation 

• Fleet-level energy efficiency poses significant risks and operational 
constraints on military operational flexibility1 

• Growing emphasis on reducing fuel usage in military systems 
– Streamline operations of existing fleet 
– Acquire efficient platforms and platforms that lead to fleet-level efficiency 

• Lack of a framework that captures the effect that fuel-saving 
measures can have on fleet-level performance metrics2  
– Do not accurately explore tradeoff opportunities 

• Determining design requirements of ‘yet-to-be-designed’ systems 
to improve fleet-level metrics is difficult 
– Couples operation decisions with new system design 
– Non-deterministic nature of fleet operations 
– Assumptions in deterministic models leads to sub-optimal performance  
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1AMC Vice Commander: Saving fuel secures the future – one gallon at a time. Inside AMC 
2DoD Acquisition and Technology:  Energy Efficiency starts with the acquisition process 
 



Air Mobility Command 

• AMC: One of the major command centers of 
the U.S. Air Force 

• AMC is the DoD’s single largest aviation fuel 
consumer (28 % of total aviation fuel use)*.   

• Non-deterministic nature of AMC operations 
– Demand is highly asymmetric 
– Demand fluctuation on a day to day basis 
– Routes flown vary based on demand 
– Limited aircraft types: C-5, C-17, C-130, Boeing 747-F, 

KC-135, etc. 

• AMC’s mission profile includes 
– Worldwide cargo and passenger transport** 
– Aerial refueling and aeromedical evacuations 

• Used Global Air Transportation Execution 
System (GATES) dataset  

– Large route network (1804 routes) 

5 
*Aviation fuel savings: AMC leading the charge. Air Mobility Command 

**This work only addresses cargo transport 
 

Sample route network from GATES 

 



SCOPE AND METHOD OF 
APPROACH 



How can our approach help? 

• Our methodology 
– Helps determine the requirements for – and 

describe the design of – a new aircraft for use in 
the AMC fleet 

– Optimize fleet-level metrics that address 
performance and fuel use 

• Describe how design requirements of the new 
aircraft would change for different tradeoff 
opportunities between productivity and cost  
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Method of Approach (1) 

• Consider this as an optimization problem 
– Objectives 

• Fleet Productivity (speed of payload delivery) 
• Fleet Direct Operating Cost (strongly driven by fuel use) 

– Variables 
• New aircraft  requirements (pallet capacity, range, speed) 
• New aircraft design variables (AR, W/S , T/W) 
• Assignment variables (flight on a particular route) 

– Constraints 
• Cargo demand  
• Aircraft performance (takeoff distance) 
• Fleet Operations (maximum operational hours) 
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Subspace Decomposition 
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Subspace Decomposition 
Approach (Deterministic) 
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Top Level 

 maximize:       Productivity 

 variable:   PalletX, RangeX, SpeedX 

Aircraft Sizing Subspace 

minimize:  DOC on route (RangeX) 

subject to: takeoff distance 

variables: ARX, (T/W)X, (W/S)X,  

PalletX 
RangeX 
SpeedX 
 
 

Cpkij ,Prodpkij 

Productivity, 
Cost 

AMC Assignment Subspace 

maximize:       productivity 

subject to:       pallet capacity, 
       scheduling constraints, 

       fuel/cost limits 

variables:       xpkij 

PalletX 
SpeedX 



Subspace Decomposition 
Approach 
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Subspace Decomposit·on 
Ap roach 

Top Level 

m axim ize: E(Productivity) Pallet 

variable: P alle(t: Range x· Speed_r 

Palletx 

E(Productivity) 

subject to: 

variables: 

DOC on route (Rangex} 

takeoff distance 

ARx, (T I fV)x, ( WI S)x, 

lJncett ain design param eters: 

Hmp~F weight, CD , SFC, JJOC!BH 

Monte Carlo Simulation 

AMC Assignment Subspace 

subject to: 

variables: 

E(productivity) = 

productiv it y 

pa llet capacity, 
scheduling const raint s, 

fuel/cost limits 

L productivity; 

N 



Top Level Subspace 

2400 3800XRange≤ ≤

Maximize 

Subject to Pallet Capacity Bounds 

Range at maximum payload 
bounds (nm) 

Cruise speed bounds (knots) 

• Pallet capacity, Range  and Speed bounds are set by strategic air lift 
aircraft description 

Productivity = Speed x Capacity 
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Design variables 
 ,  X X

X

Speed Range R
Pallet Z

+

+

∈

∈



Aircraft Sizing Subspace 

( ) ( ) ( )( ), , ,TO X takeoffX X X
S Pallet AR W S T W D≤

( )6.0 9.5XAR≤ ≤

( )65 161XW S≤ ≤

( )0.18 0.35≤ ≤XT W

 Minimize 

Subject to 

Direct Operating Cost 

Wing loading bounds (lb/ft2) 

Thrust-to-weight ratio bounds 

Aircraft takeoff distance 

Wing aspect ratio bounds 

• Bounds for aircraft design variables based on current military cargo aircraft 
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Design variables 



Uncertainty in Aircraft Design 
Parameters 

Uncertain design parameter Range of values 
∆WE (lbs) – empty weight ±10%  
∆CD0 – drag coefficient ±10%  

∆DOC/BH ($/hr) – direct operating cost / block hour ±10% 
∆SFC (1/hr) – specific fuel consumption ±10% (Baseline value: 0.5) 
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• Four-factor, three-level full factorial design of experiments (DOE) 
– Levels: 90%, 100% ,and 110% of baseline or empirically-predicted 

value 
– 81 experiments = 81 sizing + allocation under uncertainty 

• Best aircraft design based on mean from DOE trials 
– Our approach to account for uncertainty with low computational cost 

 



Fleet Assignment Subspace 
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Fleet Assignment Subspace 
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Demand constraints 

Starting location of 
aircraft constraints 

Trip constraints 

Binary decision variable 
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Uncertainty in Pallet Cargo 
Demand 

• Highly uncertain cargo demand 
• Monte Carlo sampling (MCS) methods 

– Repeated deterministic calculations for statistical distribution of input random 
parameters 
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SCENARIOS & STUDIES 
Palletized and Oversized Cargo Transport for Military Airlift Operations 
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Three-base Problem 

• Simple three-base 
problem consisting of 6 
directional routes 
– Extracted from the GATES 

dataset  
– Most flown routes in May 2006 

• Existing fleet for AMC 
– Three C-5: 36 pallet capacity  
– Three C-17: 18 pallet capacity  
– Three B747-F: 29 pallet capacity  

• 1 new aircraft of type X is 
introduced 



Subspace Decomposition 
Approach 
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Subspace Decomposit·on 
Ap roach 
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Three-base Results 

Pallet capacity   = 14 
Design range     = 2600 nm 
Cruise speed     = 400 knots 
AR  = 6.64 
T/W  = 0.262 
W/S  = 131.22 lb/ft2 

Pallet capacity  = 22 
Design range     = 2800 nm 
Cruise speed     = 500 knots 
AR  = 7.17 
T/W  = 0.283 
W/S  = 141.89 lb/ft2 

Pallet capacity   = 26 
Design range     = 2600 nm 
Cruise speed     = 550 knots 
AR  = 6.85 
T/W  = 0.272 
W/S  = 136.08 lb/ft2 
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Three-base Results 
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• Degree of dispersion for some results are smaller than for others 
• For the same productivity, some maximum fleet costs values on this 

plot still lower than costs of using existing fleet 
 

 

Error bars show min-
max variation in fleet-
level metrics due to 

uncertainties in 
demand and in the new 

aircraft design 



CONCLUDING STATEMENTS AND 
FUTURE WORK 



Concluding Statements 

• We felt there was a need for an efficient decision-
support tool to determine design requirements 
for new, to-be-acquired systems 

• We developed a framework that identifies the 
tradeoffs between fleet-level metrics 
– Each tradeoff solution describes the design 

requirements, and optimal design of the new aircraft 
– MCS techniques to address uncertainty in demand 
– DOE to explore uncertainty in system design 
– Framework appears domain agnostic, should apply to 

many different applications, vehicles, etc. 
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Future Work 

• Robust/Reliability-based problem 
formulations  

• Reduce computational expense 
– Metamodeling or response surfaces 
– Improved sampling techniques 
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Thank You 



BACKUP SLIDES 



Multi-Objective Formulation 

• Two objectives 
– Maximize fleet-level productivity 
– Minimize fleet-level cost 

• Epsilon (Gaming) constraint formulation  
– Converts multi-objective to single objective  
– Identify a primary objective 
– Place limits on other objectives (inequality constraints) 
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Air Mobility Command 

• Used Global Air 
Transportation Execution 
System (GATES) dataset  
 

• Filtered route network from 
GATES dataset 
– Demand for subset served 

by C-5, C-17 and 747-F 
(~75% of total demand) 

– Fixed density and dimension 
of pallet (463 L) 
 

• Our aircraft fleet consists of 
only the C-5, C-17 and 747-F.  
 

Source: www.amc.af.mil 
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